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The Schur-Cohn transformation is an important tool used to find
how many roots of 2 polynomial are contained inside the unit circle of
the complex plane. Using the same basic idea, a two-dimensional
hisectton scheme is derived for locating a certain root of a very high
degree polynomial (typically &> 100). By sugcessive applications of
this transformation, the root is isolated 1o fio within a thin concantric
annulus of width 1y <2 1 centesed at the otigin. This procedure determines
the magnitude (or modulus) of the root with accuracy n. The phase (or
argument} of the root along this annulus is found by slightly perturbing
the origin by an amount € <1 and constructing a new concentric
annulus, The intersection of the two annuli yields an estimate of the
root with accuracy 2n/e. The root searching scheme is global and is
faster than the Lehmer-Schur direct method, since in the proposed
scheme the origin shifting is only needed twice for all roots, compared
with many more in the Lehmer-Schuralgorithm. € 1993 Academic Press, Inc.

INTRODUCTION

Lehmer [47 introduced a direct giobal method for com-
puting the roots of polynomials. His method uses a search
procedure which is based on a theorem of Schur [10] and
its extension by Cohn [2]. The Lehmer—Schur method
requires the covering of the unit ciccle by six disks. The disk
containing a root of the polynomial is determined by mov-
ing the origin of the polynomial to the center of this disk.
Repeating this covering procedure & times it is possible to
locate a root inside a disk of radius (35)*. Improvements on
the Lehmer-Schur technique have alse been reported by
Stewart [T As noted by Schimidt and Rabiner |9},
extracting roots of high degree polynomials is a very dif-
ficult task. They compared standard root finding methods
like Jenkins and Traub [3] for the case of real roots only.
Lindsey [6] studied the roots of a class of high degree
band-limited polynomials, which arise in signal processing
applications.

We suggest here a different approach, using the same
basic ideas of the Schur~Cohn algorithm. However, rather
than moving the origin of the polynomial we isolate a cer-
tain root to lie within a thin concentric annulus, obtained
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through a recursive bisection scheme of the radii. By pertur-
bing the origin of a real polynomial along the real axis,
another concentric annulus is obtained relative to this new
origin. The intersection of the two annuli represents the
location of the desired root. The accuracy of this root
tocaling scheme is dependent on how well conditioned the
roots are for the given polynomial.

Although the main ideas arc described here, a related
paper [7] describes a spectral factorization method for
determining the roots of a polynomial.

The algorithm described in this paper, as for the
Lehmer-Schur method, is globally convergent. Qur scheme
is, however, faster, since for a prescribed accuracy the num-
ber of Schur-Cohn transformations in the Lehmer-Schur
procedure is at least six times (and possibly many more
times} that used in the present scheme. It shouid also be
noted that changing the origin of high degree polynomials
may cause undesirable disturbances in some roots,
particularly if the change is large enough. This situation is
more likely to occur in the Lehmer-Schur scheme than in
the present one.

Finally it might also be pointed out that both schemes are
robust methods for root determination of high order poly-
nomials, the accuracy of which is dependent on how well-
conditioned the roots are. Poorly conditioned roots such as
clusters or multiple rools may lead 1o less accurate
estimates, as illustrated in the numerical exampies. Unlike
iterative root finding procedures the algorithm presented
here clearly indicates the condition of the roots.

THE SCHUR-COHN TRANSFORMATION

The basic tool used in the present root detection method
consists of a series of non-linear transformations in the poly-
nomial coefficients. Each such transformation reduces the
order of an Nth-degree polynomial P, (z) to an (N — 1)th-
degree polynomial. The process is then continued recur-
sively to reduce the degree of the transformed polynomials
toN-2,N-3, ..,2 L
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Let 4,(z)= Py(z) denote the original polynomial of
degree N scaled so that the constant term or lowest
coefficient af"'=1. Then the sequence of Schur—Cohn
transformations is given by

1
A 1(2)=——= [4,(2) —rjA}(2)],
L—1rl

i=N,N—1,..,2, (1)

where the 4;(z) are complex polynomials of degree jin the
complex varlable z defined as
A,(2)=af +aPz+aPz? + . a2l

(2)
and A¥(z)= A ,(1/z) is its conjugate reverse defined by

A¥(zy=a +al) z4 - + a7 +afz

(3)

The bar over a variable denotes the complex conjugate. The
highest and lowest coefficients of each A;(z) are set equal to

W — 0 —
a’=r, ag’=1.

{4)

It 1s easily seen [rom Egs. (1) to (3) that the constraints
applied in (4) are fulfilled for any j < N.

This set of transformations was introduced by Schur [10]
and Cohn [2]. The r; are known to be the reflection coef-
ficients for acoustic wave propagation in a plane layered
medium (e.g., Claerbout [ 1]) and so it is convenient to refer
to them in this paper as reflection coefficients.

Replacing z by z~" in Eq. (1) and solving these two sets
of equations lead to

Adzy=A;_ ((2)+rz4} (2),
Ay(z)=1.

ji=2, ., N;
(5)

The above equation is known as the Levinson recursion and
is used to solve Toeplitz systems of equations in a very
efficient manner [5]. The Toeplitz matrix {R}, ;= R,;_
contains the auto correlation of the seismogram series of
increasing lags [/ — j| < N.

A geometric proof of the Levinson recursion, based on
propagating rays in a plane layered acoustic model, was
recently given by Loewenthal and Stoffa [8]. As was shown
by Schur, in order to determine if there are any roots located
inside the unit circle of the complex z-plane, we need only
inspect the magnitude of the reflection coefficients r;. It
transpires that there will be no roots inside the unit circle if
and only if

il <1, , N

j=2,.. (6)
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If condition (6) is not met for all 2 < j < N then there will be
at least one root inside the unit circle.

Let us assume that for a given Nth-degree polynomial
P {z) there is at least one root inside the unit circle. If there
are none we reverse conjugate the polynomial and start
with P%(z) instead. The roots of the reverse conjugate
polynomial are simply related to those of the original
polynomial by

F=z N (7}

The roots of P¥%(z) will now all be located inside the unit
circle. The Schur—Cohn transformation will now reveal at
lcast one reflection coefficient r, of magnitude greater than
one.

We would like to determine if there are roots located
inside a circle, with the center at the origin and with some
other radius, p < 1. To do this we define a new polynomial

On(2)b

Qnl(z)=Py(p~'2)

=Pt ip” 27

24 prpTit 4

N_N

“+pnp Tz (8)

Searching for roots of Q,(z) inside the unit circle is equiv-
alent to searching for roots of P, (z) inside the circle |z| < p.

la)

FIG. 1. (a) Inner and outer radii (solid circles) of a captured root. A
bisection using the middle radius (dashed circle) is performed, revealing
that the root resides between the dashed and the outer radius. (b) The
magnitudes of the unperturbed (r,) and the perturbed root (r,) are
revealed within accuracy of #. Their crossing reveals the actual root
position.
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The searching strategy for locating the smallest root
inside the unit circle is a radius bisection method extended
to two dimensions. We thus look for roots inside a circle of
radius p = § using the Schur-Cohn transformations. If there
are any roots inside the circle with p =3 we continue the
process with p = 1. Otherwise we continue with a circle of
radius p = 2 and so on. After k steps we will have fixed the
magnitude of the smailest root with an accuracy of at least
27% = y. The radial bisection method is illustrated in Fig, 1a.
Note that for reversed polynomials the inverse magnitude of
the largest root will be revealed to this accuracy.

Note in the case that at the Kth step one of the reflection
coefficients is, in the machine’s accuracy, very close to a
unit, we can try to search in the vicinity for a radius 2%,
where f# ~ 1. The number of bisections K cannot exceed the
number of bits in the machine’s mantissa. Thus, a multiple
root with multiplicity m can achieve an accuracy of only
n=27%m

OBTAINING MAGNITUDES OF OTHER ROOTS

To find the magnitude of the rest of the roots we use the
result known from Schur—Cohn theory that indicates the
number of roots within the unit circle. The algorithm can be
described by defining two quantities J; and count as
Vv_;= VNf,w-!(l - |rN—j+1|2)a Ji=L2 ., N-L (9)
If (Vy_,;<0} the root counter is updated by count=
count + 1, The above algorithm is initialized by setting
V=1 and count = 0. Here the quantity in parentheses in
Eq. (9) is the same denominator appearing in Eq. (1). The
transformation indicated in Eq. (8) determines the number
of roots counted for any circle centered at the origin.

Assume now that we have determined the magnitude
of roots inside a circle of radius p, and that the number of
roots found inside this circle is count;. In order to detect
additional roots between p; and the unit circle we repeat the
process of two-dimensional bisection search as described
previously. A new root will be found only if count > count;,

DETERMINING THE PHASE OF THE ROOT

The phase is determined by adopting a simple intuitive
approach. First the origin is slightly perturbed so that z is
shifted to z — z,. Then each term (z — z,)’ in the perturbed
polynomial is expanded by the binomial theorem, leading to
a new polynomial of the same degree. The root nearest the
origin can be located from the intersection of the two annuli
representing the modulus of the root in the perturbed and
unperturbed polynomials.

Note that for real polynomials where complex roots
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appear in conjugate pairs and the origin is perturbed along
the real axis, there are two points of intersection corre-
sponding to this conjugate pair (see Fig. 1b). In the more
general complex polynomial case we can obtain an
approximation of the phase of the roots by an additional
perturbation of the origin, say along the imaginary axis. The
desired root is then located at the intersection of three
annuli.

We choose to perturb the origin along the real x-axis say
to x, = ¢, where & < 1. Let us assume that the root lies on a
circle of radius r,. For the perturbed origin the same root is
assumed to lie on a circle of radius r,. Another perturbation
is carried out by an amount ¢ in the imaginary axis and the
root now has a radius r;. The desired root (x, ¥} can now
be determined by solving algebraically two pairs of the
equations :

2 52— 2.
X4+ yi=r1 (10)
X4 (y—ei=ri

The solution of Egs. (10) is given by

z 2 2 2
rl—rz £ r,lr_,' &
+3; =4
22 2 YT T2 T2

X =

(11)

Assuming that the radii can be determined with an
accuracy of n < 1, an crror analysis of the equations in (11)
shows that x and y have an associated error 2i/e. We will
demonstrate the error analysis for the first equation in (11).
We assume that r; and r, are the exact values which deter-
mine x without an error. We use, however, nonaccurate
values r, +1#,; r,+#, which yield the value x +x Here
711 <n, || <n and o is the error we seck. Placing the
inaccurate values in (11) we find

=(r1+’71]2*("2+'?2)2 €

+ 42
rre 2 2

srf+2(rl+r2)n—r§+£.
2¢

(12)

By subtracting the value of x as given in (11} and noting
that |ry| €1 and |r,| < | we find that the maximum error in
determining x (and y) is given by a < 2n/e.

Note that since we have assumed that both annuli are
common to the same root, & needs to be chosen small
enough to avoid the incorrect selection of another root. On
the other hand, ¢ has to be large compared to n. If, for
instance, we choose # = 1077 and assume a maximum
separation of roots to be ¢ = 10"? we obtain the roots
{broadly speaking) to five significant figures. This is a
relative error, as can be seen from the fact that lor large
roots with magnitude greater than units we determine only
their inverse conjugates.
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FIG. 2. The time sampled band-limited seismogram.

NUMERICAL EXAMPLES

In order to iliustrate the proposed scheme we have chosen
three examples. The first two are ninth-degree real polyno-
mials. The first of these has the prescribed complex roots

0.2+i00;
0.91:0.6;

0.214:0.0;
0.0 +:0.7;

0.3 +:i0.1;
3.0+410.0.

The second polynomial has the same set of roots, except
that the root 0.21 + §0.0 is changed to 0.2 + /0.0, making this
a double root.

The roots were found to a rough approximation with the
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FIG. 3. The complex roots associated with the seismogram of Fig. 1.

method presented in this paper. They were then iterated by
the Newton—Raphson method to obtain a more accurate
approximation. The constants n and ¢ referred to in the text
were set to be #=00005 and £=0.01, respectively. The
computations for the first two examples were performed on
a 32-bit single precision computer. The third example was
computed on a 60-bit machine.

Table I, which lists the results of the computations, con-
tains only a selection of the roots, in fact, the four roots with
the smallest magnitude. The other roots do not add any-
thing of significance to the present study. Note that in the
second example (presented in the lower part of Table 1) we
could not bisect more than eight times at the double root,
since one of the reflection coefficients becomes too close to
unit magnitude. The effective # has therefore decreased. This
1s due to the fact that a double root can only be determined
numerically with half the number of significant digits of an
isolated well-behaved root.

As our third example we have chosen a 98th-degree poly-

TABLE1

First Four Roots of Example Polynomials 1 and 2

No. bisections

Root magnitude

Root estimates

Exact roots Unpert Pert Unpert Pert Rough Iterated
02+i0 14 13 0.20001 0.19006 0.19958 4+ 100125 0.200002 — 00000008
021+i0 14 14 0.21002 0.20001 0.21018 + £.00031 0.209999 — 1.00000002
03+l 13 13 0.31628 0.30676 0.30155 + 096 0.3000003 + £.099999
0.2 +i0% 7 8 0.1992 0.1894 0.1991 +i.0003 0.2002 + :.00006
034141 13 13 03160 0.3065 0.3013 +£.0961 0.2999999 + i.1000003

Note. Example polynomial 1 s shown in the upper part of the table; polynomial 2 is in the lower part. Also included are the resulis for the unperturbed

and perturbed computations.
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nomial constructed from 98 consecutive samples of a real
seismogram. The jth time sampie of the seismogram is the
Jth coefficient of the polynomial (see Fig. 2). We are inter-
ested in determining and investigating the roots of this
polynomial. A similar example constructed from a time
serics was performed by Schmidt and Rabiner [9]. For this
cxample we have chosen £=0.01 and have selected up to
20 bisection steps to determine the magnitude of the roots.
This gives an accuracy of the root location to five significant
figures. ‘

The 98 roots are sketched relative to the unit circle in
Fig. 3. The reason so many roots are located along the unit
circle is due to the finite bandwidth of the underlying
seismogram.

CONCLUSION

A new robust method for determining the roots of a poly-
nomial has been presented. Like the Lehmer—Schur method,
it is based on the Schur—Cohn transformation. However, the
current method significantly reduces the number of such
transformations needed to locate the roots within a
prescribed accuracy. Only single (double) origin perturba-
tions are needed for real {complex) polynomials. The origin
perturbations are kept small, ensuring more stable root
approximations.

The merit of the new algorithm presented here is that it
gives an approximation to the roots of high order polyno-
mials. Whereas algorithms such as the Newton-Raphson
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and Jenkins-Traub methods can yield very accurate
approximations, they usually fail in finding roots of very
high degree polynomials. In a sense, the method given here
trades off high accuracy for the high degree of the polyno-
mials considered.
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